Rectifier Nonlinearities Improve Neural Network Acoustic Models
نویسندگان
چکیده
Deep neural network acoustic models produce substantial gains in large vocabulary continuous speech recognition systems. Emerging work with rectified linear (ReL) hidden units demonstrates additional gains in final system performance relative to more commonly used sigmoidal nonlinearities. In this work, we explore the use of deep rectifier networks as acoustic models for the 300 hour Switchboard conversational speech recognition task. Using simple training procedures without pretraining, networks with rectifier nonlinearities produce 2% absolute reductions in word error rates over their sigmoidal counterparts. We analyze hidden layer representations to quantify differences in how ReL units encode inputs as compared to sigmoidal units. Finally, we evaluate a variant of the ReL unit with a gradient more amenable to optimization in an attempt to further improve deep rectifier networks.
منابع مشابه
Acoustic echo cancellation using NLMS-neural network structures
One of the limitations of linear adaptive echo cancellers is nonlinearities which are generated mainly in the loudspeaker. The complete acoustic channel can be modelled as a nonlinear system convolved with a linear dispersive echo channel. Two new acoustic echo canceller models are developed to improve nonlinear performance. The first model consists of a time-delay feedforward neural network (T...
متن کاملImproved Automatic Speech Recognition Using Subband Temporal Envelope Features and Time-Delay Neural Network Denoising Autoencoder
This paper investigates the use of perceptually-motivated subband temporal envelope (STE) features and time-delay neural network (TDNN) denoising autoencoder (DAE) to improve deep neural network (DNN)-based automatic speech recognition (ASR). STEs are estimated by full-wave rectification and low-pass filtering of band-passed speech using a Gammatone filter-bank. TDNNs are used either as DAE or ...
متن کاملBridging Nonlinearities and Stochastic Regularizers with Gaussian Error Linear Units
We propose the Gaussian Error Linear Unit (GELU), a high-performing neural network activation function. The GELU nonlinearity is the expected transformation of a stochastic regularizer which randomly applies the identity or zero map, combining the intuitions of dropout and zoneout while respecting neuron values. This connection suggests a new probabilistic understanding of nonlinearities. We pe...
متن کاملA Probabilistic Framework for Nonlinearities in Stochastic Neural Networks
We present a probabilistic framework for nonlinearities, based on doubly truncated Gaussian distributions. By setting the truncation points appropriately, we are able to generate various types of nonlinearities within a unified framework, including sigmoid, tanh and ReLU, the most commonly used nonlinearities in neural networks. The framework readily integrates into existing stochastic neural n...
متن کاملشبکه عصبی پیچشی با پنجرههای قابل تطبیق برای بازشناسی گفتار
Although, speech recognition systems are widely used and their accuracies are continuously increased, there is a considerable performance gap between their accuracies and human recognition ability. This is partially due to high speaker variations in speech signal. Deep neural networks are among the best tools for acoustic modeling. Recently, using hybrid deep neural network and hidden Markov mo...
متن کامل